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Slide-rule-like property of Wigner’s little groups and cyclic S matrices for multilayer optics
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It is noted that 232 ‘‘ S’’ matrices in multilayer optics can be represented by the Sp~2! group whose algebraic
property is the same as the group of Lorentz transformations applicable to two spacelike and one timelike
dimensions. It is also noted that Wigner’s little groups have a slide-rule-like property that allows us to perform
multiplications by additions. It is shown that these two mathematical properties lead to a cyclic representation
of theSmatrix for multilayer optics, as in the case ofABCD matrices for laser cavities. It is therefore possible
to write the N-layer S matrix as a multiplication of theN single-layerS matrices resulting in the same
mathematical expression with one of the parameters multiplied byN. In addition, it is noted, as in the case of
lens optics, that multilayer optics can serve as an analog computer for the contraction of Wigner’s little groups
for internal space-time symmetries of relativistic particles.
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I. INTRODUCTION

In our previous paper on multilayer optics@1#, it was
shown that the complex 232 S matrix formalism is equiva-
lent to a 232 real matrix representation of the Sp~2! group,
which shares the same algebraic property as the Lor
group applicable to two spacelike and one timelike dim
sions. This group has three independent parameters. It
shown, furthermore that, under certain conditions, one of
off-diagonal elements vanishes and the three remaining
ments can be computed analytically. We called this
Iwasawa effect@1#. In this paper, we remove those ‘‘certa
conditions’’ and achieve the same kind of simplification f
all possible multilayer cases.

Indeed, the group Sp~2! plays the central role in both
quantum and classical optics, including multilayer optics@2#.
It consists of 232 real matrices whose determinant is 1. Ea
matrix contains at most three independent parameters.
thus a simple matter to multiply two or three matrices. Ho
ever, multiplication of a large number of matrices presen
new problem. The product of that many matrices will also
one 232 matrix with a unit determinant, but how can w
calculate their elements?

For example, let us look at laser cavities. It consists o
chain ofN identical two-lens systems, whereN is the number
of cycles the light beam performs. The resultingABCD ma-
trix can be written as a multiplication ofN identical matrices,
but the resulting matrix has the same mathematical form
that for the single cycle@3#.

Can we then expect a similar cyclic property in multilay
optics? We have shown in Ref.@1# that theN dependence can
be made quite transparent if the multilayerS matrix @4# is
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reduced to the Iwasawa form. In this paper, we present
cyclic property for the most general form of multilayer
without the restriction we imposed in our previous paper@1#.
We shall show that the core of theS matrix takes the form

S cosa 2sina

sina cosa D , S coshb sinhb

sinhb coshb D ,

S 1 0

g 1D , or S 1 g

0 1D . ~1!

These matrices form the core of Wigner’s little groups app
cable to the internal space-time symmetries of relativis
particles @5,6#. We note here that these matrices have
following interesting property.

We cannot write (cosa1 cosa2)5cos(a11a2) because it is
wrong. However, in the 232 matrix form

S cosa1 2sina1

sina1 cosa1
D S cosa2 2sina2

sina2 cosa2
D

5S cos~a11a2! 2sin~a11a2!

sin~a11a2! cos~a11a2!
D , ~2!

and we have similar expressions for the remaining matri
in Eq. ~1!. We call this the slide-rule-like property of Wign
er’s little groups.

If they are cycledN times, they take the forms

S cos~Na! 2sin~Na!

sin~Na! cos~Na!
D , S cosh~Nb! sinh~Nb!

sinh~b! ~coshb!
D ,

S 1 0

Ng 1D , and S 1 Ng

0 1 D , ~3!
©2003 The American Physical Society06-1
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respectively. This mathematical instrumentation works
laser cavity optics@3#. The question is whether this is appl
cable to multilayer optics.

The purpose of this paper is to show that the answer to
above question is yes. We note first that theSmatrix consists
of N cycles. Each cycle consists of two phase-shift matric
one boundary matrix, and its inverse, and this cycle does
take any of the forms given in Eq.~1! if we start the cycle
from the boundary. In this paper, we show that it is possi
to obtain the core in the form of Eq.~1! if we start the cycle
from somewhere within one of the media between the t
boundaries.

Throughout this paper, we avoid group theoretical la
guages and rely on explicit 232 matrices with real elements
However, in doing so, we are exploiting an important gro
theoretical feature that became known to us only rece
concerning contractions of Wigner’s little groups. This a
pect was discussed in detail in a recent paper on lens o
@7#. Thus, we shall borrow some of the mathematical ide
ties from that paper.

In addition, in the present paper, we observe that Wign
little group has slide-rule-like properties that allow us to co
vert multiplications into additions. This property was not
for one of the little groups in the paper by Hanet al. In this
paper, we shall show that all three of the little groups ha
the same slide-rule-like property, using Eq.~2!.

In Sec. II, we formulate the problem in terms of theS
matrix method widely used in multilayer optics@4,8,9#, and
show that the complexSmatrices can be transformed to re
matrices by a conjugate transformation, and thus to the a
bra of the Sp~2! group which is by now a familiar math
ematical language in optics. In Sec. III, we import from t
literature mathematical identities useful for the purpose
the present paper. They are derivable from Wigner’s li
groups and their contractions. In Sec. IV, using the cyc
property of Eq.~3!, it is possible to write the multilayerS
matrix as a multiplication of theN single-layerS matrices
resulting in the same mathematical expression with one
the parameters multiplied byN. In Sec. V, it is pointed out
that the mathematical identities presented in this paper
be tested experimentally. We discuss the condition un
which the system can achieve the Iwasawa effect@1#. In Sec.
VI, we explain what we do in this paper using group the
retical language, particularly in terms of Wigner’s litt
groups which dictate internal space-time symmetries of r
tivistic particles.

II. FORMULATION OF THE PROBLEM

It was noted in our previous paper that one cycle
N-layer optics starts with the boundary matrix of the for
@10#

B~h!5S cosh~h/2! sinh~h/2!

sinh~h/2! cosh~h/2!
D , ~4!

which, as illustrated in Fig. 1, describes the transition fro
medium 2 to medium 1, taking into account both the tra
02660
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mission and the reflection of the beam. As the beam pa
through medium 1, it undergoes the phase shift represe
by the matrix

P~f1!5S e2 if1/2 0

0 eif1/2D . ~5!

When the wave hits the surface of the second medium,
corresponding matrix is

B~2h!5S cosh~h/2! 2sinh~h/2!

2sinh~h/2! cosh~h/2!
D , ~6!

which is the inverse of the matrix given in Eq.~4!. Within the
second medium, we write the phase-shift matrix as

P~f2!5S e2 if2/2 0

0 eif2/2D . ~7!

Then, when the wave hits the first medium from the seco
we have to go back to Eq.~4!. Thus, one cycle consists of

M15S cosh~h/2! sinh~h/2!

sinh~h/2! cosh~h/2!
D S e2 if1/2 0

0 eif1/2D
3S cosh~h/2! 2sinh~h/2!

2sinh~h/2! cosh~h/2!
D S e2 if2/2 0

0 eif2/2D .

~8!

This arrangement of matrices is illustrated in Fig. 1.
The M1 matrix, Eq. ~8!, contains complex numbers, bu

we are interested in carrying out calculations with real m
trices. This can be done if we make the following conjuga
transformation@1#.

Let us next consider the matrix

FIG. 1. Optical layers. There are phase-shift matrices for th
respective layers. There is a boundary matrix for transition from
first to the second medium, and its inverse applies to the trans
from the second to the first medium. The mathematics beco
much simpler if the cycle starts in the middle of the second lay
6-2
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SLIDE-RULE-LIKE PROPERTY OF WIGNER’S LITTLE . . . PHYSICAL REVIEW E 68, 026606 ~2003!
C5
1

2S 1 1

21 1D S 1 i

i 1D 5
1

A2
S eip/4 eip/4

2e2 ip/4 e2 ip/4D . ~9!

This matrix and its inverse can be written as

C5
eip/4

A2
S 1 1

i 2 i D , C5
e2 ip/4

A2
S 1 2 i

1 i D . ~10!

We have shown in our previous paper that

M25CM1C21, ~11!

with

M25S eh/2 0

0 e2h/2D S cos~f1/2! 2sin~f1/2!

sin~f1/2! cos~f1/2!
D

3S e2h/2 0

0 eh/2D S cos~f2/2! 2sin~f2/2!

sin~f2/2! cos~f2/2!
D . ~12!

The conjugate transformation of Eq.~11! changes the bound
ary matrixB(h) of Eq. ~4! to a squeeze matrix

S~h!5S eh/2 0

0 e2h/2D , ~13!

and the phase-shift matricesP(f1) of Eqs. ~5! and ~7! to
rotation matrices

R~f i !5S cos~f i /2! 2sin~f i /2!

sin~f i /2! cos~f i /2!
D , ~14!

with i 51,2.
Indeed, the matricesM1 andM2 can be written as

M15B~h!P~f1!B~2h!P~f2!,

M25S~h!R~f1!S~2h!R~f2!. ~15!

The matrixM2 can be obtained fromM1 by the conjugate
transformation in Eq.~11!. Conversely,M1 can be obtained
from M2 through the inverse conjugate transformation:

M15C21M2C. ~16!

In addition, the conjugate transformations have the f
lowing properties:

~M2!N5C~M1!NC21, ~M1!N5C21~M2!N C. ~17!

Thus, we can studyM2 in order to studyM1. The advantage
of M2 is that it consists of real matrices. The group of the
matrices is called Sp~2! which is like ~isomorphic! the Lor-
entz group applicable to three space and one time dim
sions. This group contains very rich group-theoretical c
tents including those of Wigner’s little groups. We intend
studyM2 in terms of those little groups.

The problem is thatM2 takes a simple form and (M2)2 is
manageable, but we cannot predict what form (M2)N takes.
In this paper, we shall construct the core matrix of the fo
02660
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of Eq. ~1! for multilayer optics. Then, as we can see in E
~3!, the chain effect is straightforward. We shall calcula
(M2)N first and then (M1)N.

III. MATHEMATICAL IDENTITIES
FROM THE LORENTZ GROUP

Wigner’s little groups were formulated for internal spac
time symmetries of relativistic particles@5,6#. However, they
produced many mathematical identities useful in oth
branches of physics, including classical layer optics, wh
depends heavily on 232 matrices. The correspondence b
tween the 232 and 434 representations of the Lorentz grou
has been repeatedly discussed in the literature@1,3,7#. In the
232 representation, we write the rotation matrix around
y axis as

S cos~f/2! 2sin~f/2!

sin~f/2! cos~f/2!
D , ~18!

and the boost matrices along thez andx axes as

S eh/2 0

0 e2h/2D and S coshl sinhl

sinhl coshl
D , ~19!

respectively. We shall use only these three matrices in
paper.

We use the following identity that Baskal and Kim intro
duced recently in their paper on lens optics and group c
tractions@7,11#:

S eh/2 0

0 e2h/2D S cos~f/2! 2sin~f/2!

sin~f/2! cos~f/2!
D S e2h/2 0

0 eh/2D
5S cos~u/2! 2sin~u/2!

sin~u/2! cos~u/2!
D S coshl sinhl

sinhl coshl
D

3S cos~u/2! 2sin~u/2!

sin~u/2! cos~u/2!
D , ~20!

with

cos~f/2!5coshl cosu,

e2h5
coshl sinu1sinhl

coshl sinu2sinhl
. ~21!

The left-hand side of the above expression is one rota
matrix sandwiched between one boost matrix and its inve
while the right-hand side consists of one boost matrix sa
wiched between two identical rotation matrices.

The left-hand side of Eq.~20! is the same as the first thre
matrices of the core matrixM2 given in Eq.~12!. However,
the fourth matrix is a rotation matrix. Since one rotatio
matrix multiplied by another rotation matrix is still a rotatio
matrix, the core matrixM2 is one boost matrix sandwiche
between two different rotation matrices. Thus, the problem
to find a transformation that will make those two rotatio
6-3
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matrices the same, and go back to the form of the left-h
side of Eq.~20!. We shall come back to this problem in Se
IV.

If we complete the matrix multiplications of both side
the result is

S cos~f/2! 2ehsin~f/2!

e2hsin~f/2! cos~f/2!
D

5S coshl cosu 2~coshl sinu1sinhl!

coshlsinu2sinhl coshlcosu D .

~22!

Then, we can writef andh in terms ofl andu as given in
Eq. ~21!. The parametersl andu can be written in terms o
f andh as

coshl5~coshh!A12cos2~f/2!tanh2h,

cosu5
cos~f/2!

~coshh!A12cos2~f/2!tanh2h
. ~23!

The above relation is valid only if (coshl sinu/2
2sinhl) is positive. If it is negative, the left-hand side of th
above expression should be

S eh/2 0

0 e2h/2D S cosh~x/2! 2sinh~x/2!

2sinh~x/2! cosh~x/2!
D S e2h/2 0

0 eh/2D
5S cosh~x/2! 2ehsinh~x/2!

2e2hsinh~x/2! cosh~x/2!
D , ~24!

with

cosh~x/2!5coshl cosu,

e2h5
coshl sinu1sinhl

sinhl2coshl sinu
. ~25!

Conversely,l andu can be written in terms ofx andh as

coshl5~coshh!Acosh2~x/2!2tanh2h,

cosu5
cosh~x/2!

~coshh!Acosh2~x/2!2tanh2h
. ~26!

An interesting case is when sinhl2coshl sinu becomes
zero andh becomes very large. If we insist that

ehsin~f/2!5u, ~27!

remain finite, thenf/2 must become very small. On th
right-hand side

u52 sinhl, with sinu5tanhl. ~28!

The net result is that both sides take the form
02660
d S 1 22 sinhl

0 1 D . ~29!

In their recent paper@7#, Baskal and Kim studied in detai
the transition from Eq.~22! to Eq.~24! through Eq.~29!, and
showed that the one-lens camera goes through this trans
as we try to focus the image. Mathematically, the syst
goes through group contraction processes. In the presen
per, we show that the same contraction process can
achieved in multilayer optics.

IV. CYCLIC REPRESENTATION OF THE S MATRIX

It was noted in Sec. II that each cycle consists of

~SR1S21R2!, ~30!

with

R15R~f1! and R25R~f2!, ~31!

of Eq. ~14!, respectively. The squeeze matrixS is given in
Eq. ~13!. For the layer consisting ofN cycles, let us conside
the chain

M2
N5~SR1S21R2!~SR1S21R2!

3~SR1S21R2!•••~SR1S21R2!. ~32!

According to Eq.~20!, we can now writeSR1S21 in the
above expression as

SR1S215R3 XR3 , ~33!

with

R35S cos~f3/2! 2sin~f3/2!

sin~f3/2! cos~f3/2!
D , X5S coshl sinhl

sinhl coshl
D ,

~34!

and

coshl5~coshh!A12cos2~f1/2!tanh2h,

cosf35
cos~f1/2!

~coshh!A12cos2~f1/2!tanh2h
. ~35!

The parametersl and f3 are determined fromh and f1
which are the input parameters from the optical properties
the media.

The chain of Eq.~32! becomes

M2
N5~R3XR3R2!~R3XR3R2!~R3XR3R2!•••~R3XR3R2!.

~36!

Let us next introduce the rotation matrixR(a) as

R~a!5~R2!1/2R3 , ~37!

with

a5f31 1
2 f2 , ~38!
6-4
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wheref2 is an input parameter. Sincef3 is determined byh
andf1, the rotation anglea is determined by the three inpu
parameters, namely,h, f1, andf2.

In terms ofR5R(a), the chain of Eq.~36! becomes

M2
N5R3R21~RXR!~RXR!~RXR!•••~RXR!R21R3R2 .

~39!

SinceR3R215R2
21/2 andR21R3R25R2

1/2 from Eq. ~38!,

M2
N5~R2!21/2~RXR!~RXR!~RXR!•••~RXR!~R2!1/2.

~40!

The (R2)1/2 factors in this expression indicate that the cyc
starts in the middle of the second medium, as illustrated
Fig. 1.

According to Eqs.~20! and~22!, we can now writeRXR
as

RXR5S coshl cosa 2~coshl sina1sinhl!

coshl sina2sinhl coshl cosa D .

~41!

According to the formulas given in Sec. III, especially E
~20!, RXRcan also be written as

RXR5ZAZ21, ~42!

with

Z5S ej/2 0

0 e2j/2D . ~43!

Now the 232 matrixA can take one of the following forms
If the off-diagonal elements of the matrix of Eq.~41! have

opposite signs, theA matrix becomes

A5S cos~f/2! 2sin~f/2!

sin~f/2! cos~f/2!
D , ~44!

with

cos~f/2!5coshl cosa,

e2j5
coshl sina1sinha

coshl sina2sinhl
. ~45!

If, on the other hand, the off-diagonal elements of the ma
RXRhave the same sign, the matrixA should be written as

A5S cosh~x/2! 2sinh~x/2!

2sinh~x/2! cosh~x/2!
D , ~46!

with

cosh~x/2!5coshl cosa,

e2j5
coshl sina1sinhl

sinhl2coshl sina
. ~47!
02660
in
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x

We note from Eqs.~44! and ~46! that the matrixA takes
circular or hyperbolic forms depending on the sign of t
lower-left element of Eq.~41!, which is

sinhl2~sina!coshl, ~48!

and note that this expression can change from a positiv
negative number continuously as the parametersl and a
vary. These two parameters are determined from the refl
tion and transmission properties of the media.

While expression of Eq.~48! makes continuous transition
it has to go through zero. If it vanishes,

RXR5S 1 22 sinhl

0 1 D . ~49!

The transition ofA from Eq. ~44! to Eq. ~46! through this
process has been discussed in detail in Ref.@7# in connection
with the contraction of Wigner’s little groups.

As we noted in Sec. II, the matrixA has the desired cyclic
property. Thus,

M2
N5~R2!21/2@~ZAZ21!~ZAZ21!~ZAZ21!•••~ZAZ21!#

3~R2!1/2. ~50!

Consequently,

M2
N5~R2!21/2@Z AN Z21#~R2!1/2. ~51!

If A takes the form of Eq.~44!,

AN5S cos~Nf/2! 2sin~Nf/2!

sin~Nf/2! cos~Nf/2!
D . ~52!

For A given in Eq.~46!,

AN5S cosh~Nx/2! 2sinh~Nx/2!

2sinh~Nx/2! cosh~Nx/2!
D . ~53!

As Eq. ~49!,

~RXR!N5S 1 22N sinhl

0 1 D . ~54!

Then, the calculation of (M2)N for the N-layer case is
straightforward. We can now compute the matrix (M1)N us-
ing the conjugate transformation of Eq.~17!. Let us write our
result in 232 matrices:

M2
N5F S cos~f2/4! 2sin~f2/4!

sin~f2/4! cos~f2/4!
D S ej/2 0

0 e2j/2D G
3S cos~Nf/2! 2sin~Nf/2!

sin~Nf/2! cos~Nf/2!
D F S e2j/2 0

0 ej/2D
3S cos~f2/4! sin~f2/4!

2sin~f2/4! cos~f2/4!
D G ~55!

for A of Eq. ~44!. For A of Eq. ~46!,
6-5
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M2
N5F S cos~f2/4! 2sin~f2/4!

sin~f2/4! cos~f2/4!
D S ej/2 0

0 e2j/2D G
3S cosh~Nx/2! 2sinh~Nx/2!

2sin~Nx/2! cos~Nx/2!
D F S e2j/2 0

0 ej/2D
3S cos~f2/4! sin~f2/4!

2sin~f2/4! cos~f2/4!
D G . ~56!

If the lower-left element given in Eq.~48! vanishes, we
have to go back to Eqs.~40! and ~49!, and write

M2
N5S cos~f2/4! 2sin~f2/4!

sin~f2/4! cos~f2/4!
D S 1 22N sinhl

0 1 D
3S cos~f2/4! sin~f2/4!

2sin~f2/4! cos~f2/4!
D . ~57!

As we noted in Sec. II, we useM2 andM2
N for mathemati-

cal convenience. In the real world, we have to useM1 and
M1

N . It is not difficult to write this expression using th
conjugate transformation of Eq.~16!. It can be written as

M1
N5F S e2 if2/4 0

0 eif2/4D S cosh~j/2! sinh~j/2!

sinh~j/2! cosh~j/2!
D G

3S e2 iNf/2 0

0 eiNf/2D F S cosh~j/2! 2sinh~j/2!

2sinh~j/2! cosh~j/2!
D

3S eif2/4 0

0 e2 if2/4D G ~58!

if A takes the form of Eq.~44! with a positive value of Eq.
~48!. If it takes the form of Eq.~46! with a negative value of
Eq. ~48!,

M1
N5F S e2 if2/4 0

0 eif2/4D S cosh~j/2! sinh~j/2!

sinh~j/2! cosh~j/2!
D G

3S cosh~Nx/2! i sinh~Nx/2!

2 i sinh~Nx/2! cosh~Nx/2!
D

3F S cosh~j/2! 2sinh~j/2!

2sinh~j/2! cosh~j/2!
D S eif2/4 0

0 e2 if2/4D G .
~59!

If the expression of Eq.~48! vanishes,

M1
N5S e2 if2/4 0

0 eif2/4D S 12 iN sinhl iN sinhl

2 iN sinhl 11 iN sinhl
D

3S eif2/4 0

0 e2 if2/4D . ~60!

This is not yet theS matrix. The first and the last layer
have boundaries with air or the third medium. It is straig
02660
-

forward to take these boundary conditions into considerat
This procedure was discussed in detail in our previous pa
@1#.

V. EXPERIMENTAL POSSIBILITIES

The variables for theS matrix given in Secs. III and IV
are determined by the optical parameters, namely, the
phase shifts and one reflection/transmission coefficient.
combinations of these three variables will determine
form of theS matrix, which may take three different forms

We note first that theN dependence of theSmatrix comes
from the form of theA matrix or theRXRmatrix of Eq.~41!.
If the optical parameters are such that theA matrix takes the
form of Eq. ~44!, the elements of theAN matrix of Eq.~52!
are bounded and oscillating functions ofN. If A takes the
form of Eq. ~46!, the AN matrix becomes Eq.~53!. The ele-
ments of this matrix are not bounded asN becomes large.
Thus, in the real world,N layers can have two different type
depending on the form ofA.

In addition, the optical layers can satisfy the conditi
that the expression of Eq.~48! be zero:

sinhl2~sina!coshl50. ~61!

Then theRXR matrix takes the form of Eq.~49! and theN
dependence is linear. This case can be tested as the op
parameters are varied from positive values of Eq.~48! to a
positive value through zero. This condition does not depe
on N. We have discussed a similar case in our previous pa
@1#.

In their recent paper@7#, Baskal and Kim noted the sam
transition process for one-lens optics. They noted that
camera focusing mechanism corresponds to contraction
Wigner’s little groups. It is interesting to note that the sam
contraction mechanism exists inN-layer optics.

VI. WIGNER’S LITTLE GROUPS

The algebra of 232 matrices is the basic scientific lan
guage in ray optics, including polarization optics, interfero
eters, lens systems, lasers, and multilayer optics. The alg
of 232 unimodular matrices is called the group SL(2,c), and
is the universal covering group for the six-parameter Lore
group applicable to Lorentz transformations in t
Minkowskian space of one time and three space dimensi
This allows us to study ray optics with the Lorentz group

There are a number of interesting subgroups of the L
entz group. Among them is the three-parameter rotat
group. There is also a subgroup that shares the same
braic property as the two-dimensional Euclidean gro
There is also a three-parameter subgroup consisting of
entz transformations applicable to the Minkowskian space
one time and two space dimensions. In 1939@5#, Wigner
observed that these subgroups dictate the internal space
symmetries of massive, massless, and tachyonic partic
respectively.

These are called Wigner’s little groups. In his 1939 pap
Wigner constructed the little group as the maximal subgro
6-6
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SLIDE-RULE-LIKE PROPERTY OF WIGNER’S LITTLE . . . PHYSICAL REVIEW E 68, 026606 ~2003!
of the Lorentz group whose transformations leave the fo
momentum of a given particle invariant. For instance,
four-momentum of a massive particle in its rest frame
invariant under rotations in the three-dimensional spa
What happens when the particle moves? The momentum
the particle can be boosted from that of its rest frame. T
little group is then a Lorentz-boosted rotation group.
mathematical language, this is a conjugate transformation
this case, the rotation matrix is sandwiched between a b
matrix and its inverse, as in the case of Eq.~8!. In this paper,
we exploited this aspect of Wigner’s little group.

In addition, each little group contains a one-parame
subgroup. For instance, rotations around they axis form a
one-parameter Abelian group. The slide-rule-like prope
discussed in this paper comes from this aspect of the l
groups.

As for the Sp~2! group, it is gratifying to note that theS
matrix formalism, originally formulated in terms of comple
matrices, can be transformed into the real-matrix represe
tion of Sp~2! by a conjugate transformation as was noted
Sec. II, and as was discussed in detail in our previous pa
@1#. This is equivalent to restricting transformations in t
two-dimensional space consisting of boosts along thez andx
directions and rotations around they axis. Under this restric-
tion, the little groups become one-parameter Abelian grou
represented by the matrices given in Eq.~1!. We can recover
the full little groups by simply adding rotations around thez
axis @12#.

The little groups can be discussed in the framework of
groups and Lie algebras. In this framework, group contr
tions are strictly singular transformations, and it is not p
sible to make an analytic continuation from one little gro
to another. However, we can circumvent this inconvenie
by using different parametrization. In this way, it is possib
to make the desired analytic continuation. This aspect
noted by Baskal and Kim in their recent paper@3# and is seen
again in the present paper.
-
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VII. CONCLUDING REMARKS

Based on Wigner’s little groups, we have developed
algebraic method that allows us to study the cyclic proper
of 232 S matrices for multilayer optics. Starting from th
single-layerS matrix, it is possible to write theN-layer ma-
trix by multiplying one of the parameters byN. The N de-
pendence is therefore transparent.

This is possible because the core matrices of Wigne
little groups have a slide-rule-like property that allows us
perform multiplications by additions, as noted in Eq.~2!.
This property is an important element in computer design

As was noted in Ref.@7#, the transition from Eq.~44! to
Eq. ~21! corresponds to camera focusing in one-lens opt
From the mathematical point of view, it corresponds to t
contraction and expansion of the little groups. From the g
metrical point of view, this corresponds to transformati
from a circle to a hyperbola. It is interesting to note that w
can also perform these operations in multilayer optics.
deed, as in the case of lens optics@7#, multilayer optics can
serve as an analog computer for group contractions.

The correspondence between the Lorentz groups O~3,1!
and SL(2,c), the group of 232 unimodular matrices, is wel
known. Since most of the matrices in ray optics are 232, the
Lorentz group is becoming the major language in this fie
Ray optics is the backbone of future technology, and opt
devices, such as polarizers, lenses, interferometers, and
tilayers, all speak the language of the Lorentz group. Thu
is possible for the Lorentz group to play computational ro
in future generations of computers.

It is a prevailing view in physics, especially in optics, th
group theory is only for studying symmetries and is not u
ful for computational purposes. Indeed, we do not ne
group theory to carry out the matrix multiplications given
this paper, and we started only with three matrices given
Eqs. ~18! and ~19!. However, we are going through som
important theorems in group theory while going through t
simple matrix algebras given in this paper. We choose no
elaborate on this point.
.
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